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Abstract. In this paper, we describe and compare two distinct algo-
rithms aiming at the low-rank approximation of a user-item ratings ma-
trix in the context of Collaborative Filtering (CF). The first one imple-
ments standard Principal Component Analysis (PCA) of an association
matrix formed from the original data. The second algorithm is based on
h-NLPCA, a nonlinear generalization of standard PCA, which utilizes
an autoassociative network, and constrains the nonlinear components
to have the same hierarchical order as the linear components in stan-
dard PCA. We examine the impact of the aforementioned approaches
on the quality of the generated predictions through a series of experi-
ments. Experimental results show that the latter approach outperforms
the standard PCA approach for most values of the retained dimensions.
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1 Introduction

With the term Collaborative Filtering (CF) we refer to intelligent techniques
which are employed by Recommender Systems (RSs) and are used to generate
personalized recommendations. The basic idea of CF is that users who have
agreed in the past tend to agree in the future. A common and successful approach
to collaborative prediction is to fit a factor model to the original rating data,
and use it in order to make further predictions. A factor model approximates the
observed user preferences in a low dimensionality space in order to uncover latent
features that explain user preferences. In this paper, we will focus on two PCA
implementations, aiming at the low-rank approximation of the corresponding
user-item ratings matrix.

PCA is a well-established data analysis technique that relies on a simple
transformation of recorded observations, to produce statistically independent
score variables. It has been extensively used for lossy data compression, feature
extraction, data visualization, and most recently in the field of Collaborative
Filtering [1–3]. The linear assumption underlying PCA makes it insufficient for
capturing nonlinear patterns among variables. Artificial Neural Network (ANN)
models, a class of nonlinear empirical modeling methods, allow for nonlinear
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mappings between the original and the reduced dimensional spaces. Various
ANN methods have been described in a PCA framewok [4–7]. ANNs have been
utilized for the generation of CF predictions: Billsus and Pazzani [8] formulate
CF as a classification problem by feeding their data matrix of reduced dimensions
to an ANN. Lee et al. [9] put users into clusters by using a Self-Organizing
Map neural network, and then apply CF on those clusters in order to extract
recommendations. Gong and Ye [10] utilize a backpropagation neural network
to fill the missing values of the original data matrix, and then apply item-based
CF to form the item neighborhood.

The aim of this paper is to examine two implementations of PCA in the
context of CF. The first implementation utilizes PCA through the Singular Value
Decomposition (SVD) of the covariance matrix. For our second implementation
we apply a hierarchical nonlinear PCA algorithm, denoted as h-NLPCA [11]. The
primary contribution of this work lies in the application of h-NLPCA, which is
based on a multi-layer perceptron with an auto-associative topology, for the
generation of personalized recommendations. The main advantage of h-NLPCA
is that it enforces a hierarchical order of principal components which always
yields the same solution of uncorrelated features.

The remainder of this paper is organized as follows: Section 2 is devoted to
a general presentation of the two PCA approaches, through SVD and ANNs,
respectively. Section 3 discusses the proposed algorithms in the context of CF,
outlining the distinct implementation steps. The efficiency of each approach is
demonstrated in Section 4 through a set of experiments on a publicly available
data set. The paper concludes in Section 5.

2 Two PCA Implementations

2.1 SVD-based PCA

PCA summarizes the variation in correlated multivariate attributes to a set of
non-correlated components, called principal components, each of which is a par-
ticular linear combination of the original variables [1]. PCA can be performed by
applying the SVD to either a covariance or a correlation matrix of the original
data set, in order to extract the smallest number of components while retaining
as much of the original variance as possible. The eigenvalues of the covariance
(correlation) matrix indicate the amount of variance along the direction given by
the corresponding eigenvector. That is, when a covariance matrix A is decom-
posed by SVD, i.e., A = USVT , the matrix U contains the variables’ loadings
for the principal components, and the matrix S has the corresponding variances
along the diagonal [1]. A reduction to k dimensions is obtained by projecting the
original data matrix on the subspace consisting of eigenvectors corresponding to
the largest k eigenvalues of the covariance matrix.

2.2 h-NLPCA

Nonlinear PCA is based on a multi-layer perceptron (MLP) with an autoassocia-
tive topology, also known as an autoencoder. The network consists of two parts:
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the first part represents the extraction function, Φextr : X → Z . The second part
represents the inverse, reconstruction function, Φgen : Z → X̂ . A hidden layer in
each part enables the network to perform nonlinear mapping functions [11]. The
autoassociative network performs an identity mapping, which means that the
input is approximated at the output layer with the highest possible accuracy.
This property of the network is achieved by minimizing the squared reconstruc-
tion error E = 1

2 ||x̂ − x||2. This task, which is nontrivial, is accomplished by a
‘bottleneck’ layer in the middle, of smaller dimension than either the input or
output layers. Thus, the data have to be projected or compressed into a lower
dimensional representation Z, for the subsequent layers to reconstruct the input.
If network training succeeds in finding an acceptable solution, we may assume
that data compression achieved at the ‘bottleneck’ layer may force hidden units
to represent significant features in data.

Hierarchical nonlinear PCA (h-NLPCA), as proposed by Scholz et al. [11],
provides the optimal nonlinear subspace spanned by components, but also con-
strains the nonlinear components to have the same hierarchical order as the linear
components in standard PCA. This means that the first n components explain
the maximal variance that can be covered by a n-dimensional subspace and that
the i-th component of an n component solution is identical to the i-th component
of an m component solution. E1 and E1,2 are the squared reconstruction errors
when using one or two components in the ‘bottleneck’ layer, respectively. In order
to perform the h-NLPCA, we have to minimize both E1,2 (as in plain NLPCA,
or s-NLPCA), and E1. In practice, this is equal to minimizing the hierarchical
error, EH :EH = E1 + E1,2. The optimal network weights for a minimal error in
h-NLPCA can be found by using the conjugate gradient descent algorithm [31].
At each algorithm’s iteration, the single error terms E1 and E1,2 have to be cal-
culated separately. In standard s-NLPCA, this is performed by a network with
either one or two units in the ‘bottleneck’ layer. In the case of h-NLPCA, one net-
work is the subnetwork of the other. The hierarchical error function can be easily
extended to k components (k ≤ d): EH = E1 + E1,2 + E1,2,3 + · · ·+ E1,2,3,...,k.

In other words, for the minimization of EH , we search for a k-dimensional
subspace of minimal mean square error (MSE) under the constraint that the
(k − 1)-dimensional subspace is also of minimal MSE. This requirement is ex-
tended so that all 1, . . . , k dimensional subspaces are of minimal MSE. Hence,
each subspace represents the data with regard to its dimensionalities best. Hi-
erarchical nonlinear PCA can therefore be seen as a true and natural nonlinear
extension of standard linear PCA [11].

3 The Proposed Algorithms

In this section we will describe how the aforementioned PCA implementations
can be combined with CF in order to make prediction generation both scalable
and effective. In both cases, once PCA is applied for the low rank approxima-
tion of the original user-item ratings matrix, we compute a neighborhood for
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each user. Finally, user similarity is utilized for the generation of the requested
prediction.

3.1 CF through h-NLPCA

We start with the following basic definitions. For i = 1, . . . , n users, ratings
on j = 1, . . . , m items are collected in the n × m data matrix R. Each of the
corresponding items takes on k different rating values (levels or categories) from
a given range, i.e. (1, 2, 3, 4, 5).
Step 1. Data representation. Impute the missing values in the original user-item
matrix, R, with the corresponding column average, r̄j , which leads to a new
filled-in matrix, A.
Step 2. Low rank approximation. The conjugate gradient descent algorithm [11]
is used to train the h-NLPCA network as described in Section 2. The hierarchical
error Eh is minimized at each training iteration. The reduced or reconstructed
matrix is denoted as Ak, where k is the number of retained components.
Step 3. Neighborhood Formation. Calculate the similarity measure between each
user and his closest neighbors in order to form the user neighborhood. To find
the proximity between two users, ua and ui, we utilize the Pearson correlation
coefficient, which is computed as follows:

corai =

∑l
j=1 rajrij√∑l

j=1 raj

∑h
j=1 rij

where rij denotes the rating of user ui on item ij . Note that the summations over
j are calculated over the l items for which both users ua and ui have expressed
their opinions.
Step 4. Prediction Generation. Prediction generation requires that a user neigh-
borhood of size h is already formed for the active user, ua. Then, we compute
the prediction rating paj for user ua on item ij , using the following equation:

paj = r̄j +
∑h

i=1 rrij ∗ corai∑h
i=1 |corai|

It is important to note that the user ratings, rrij , are taken from the reduced
matrix Ak. Also, we have to add the original item average back, r̄j , since it was
subtracted during the normalization step of the preprocessing.

3.2 CF through SVD-based PCA

Step 1. Data representation and normalization. Impute the missing values in the
original user-item matrix, R, with the corresponding column average, r̄j . Then
obtain the column centered matrix A.
Step 2. Low rank approximation. Compute the SVD of A and keep only the first
k eigenvalues. This is equivalent to the factorization of the covariance matrix
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Fig. 1. Comparison of PCA and h-NLPCA for different values of retained dimensions
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TA [1]. The reduced or reconstructed matrix is denoted as Ak, where k
is the number of retained components.
Neighborhood formation and prediction generation (steps 3 and 4) are executed
as described in the h-NLPCA implementation.

4 Experiments

In this section the efficiency of each approach is demonstrated through a series
of experiments. We utilized MovieLens, a dataset publicly available from the
GroupLens research group, which consists of 100,000 ratings, assigned by 943
users on 1682 movies. The sparsity of the data set is high, at a value of 93.7%.
Starting from the initial data set, a distinct split of training (80%) and test (20%)
data was utilized. Mean Absolute Error (MAE) was the metric we employed to
evaluate the accuracy of the methods. MAE measures the deviation of predictions
generated by the RSs from the true rating values, as they were specified by the
user.

For our experiments, we kept a fixed user neighborhood size and evaluated
the effect of a varying number of retained dimensions, k, on prediction accuracy.
Figure 1 depicts the MAE for values of k ranging between 2 and 15. Based on
that figure, it is clear that h-NLPCA outperformed SVD-based PCA for almost
all the values of retained dimensions. In particular, h-NLPCA generated the
overall most accurate prediction, MAE=0.7843, for k=10, meaning that only
10 pseudo-items, out of the 1682 original ones, were able to capture the latent
relations existing in the initial user-item ratings matrix. In contrast, SVD-based
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PCA reached its lowest error value, MAE=0.7933, for a slightly larger value of
k, k=14.

5 Conclusions and Future Work

In this paper we described two factor models, SVD-based PCA and h-NLPCA
for the low-rank approximation of a user-item ratings matrix in the context of
CF. h-NLPCA, which can be considered as a neural based non-linear extension
of PCA, gave the most accurate predictions according to MAE when applied
to the MovieLens dataset. The main advantage of the proposed approach stems
from the fact that h-NLPCA is able to account for more of the variance in the
data compared to SVD-based PCA, when the variables are (or may be) nonlin-
early related to each other. However, the prediction accuracy of a certain method
depends on the structure of the data it is used on. A detailed comparison on
different data sets is beyond the scope of this article. In both PCA implementa-
tions, the sparse user-item ratings matrix is filled using the average ratings for
users to capture a meaningful latent relationship. Future considerations include
PCA methods that are robust against missing data and that allow for missing
value estimation. For example, non linear PCA approaches, such as Kernel PCA
and Regularized PCA [1], may provide a valuable insight into the CF framework.

References

1. Jolliffe, I.T.: Principal Component Analysis (2nd Ed.). Springer (2002)
2. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time

collaborative filtering algorithm. Information Retrieval Journal 4 (2001) 133–151
3. Kim, D., Yum, B.J.: Collaborative filtering based on iterative principal component

analysis. Expert Systems with Applications 28 (May 2005) 823–830
4. Oja, E.: A simplified neuron model as a principal component analyzer. Journal of

Mathematical Biology 15(3) (November 1982) 267–273
5. Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks: Theory

and Applications. John Wiley & Sons, New York (1996)
6. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neu-

ral networks. AIChE Journal 37(2) (February 1991) 233–243
7. Tan, S., Mayrovouniotis, M.L.: Reducing data dimensionality through optimizing

neural network inputs. AIChE Journal 41(6) (1995) 1471–1480
8. Billsus, D., Pazzani, M.J.: Learning collaborative information filters. In: 15th

International Conference on Machine Learning, Madison, WI (1998) 46–53
9. Lee, M., Choi, P., Woo, Y.: A hybrid recommender system combining collabora-

tive filtering with neural network. In Bra, P.D., Brusilovsky, P., Conejo, R., eds.:
Adaptive Hypermedia and Adaptive Web-Based Systems. Springer-Verlag, Berlin,
Heidelberg (2002) 531–534

10. Gong, S., Ye, H.: An item based collaborative filtering using bp neural networks
prediction. In: 2009 International Conference on Industrial and Information Sys-
tems, Haikou, China (2009) 146–148

11. Scholz, M., Fraunholz, M., Selbig, J.: Nonlinear principal component analysis:
Neural network models and applications. In: Principal Manifolds for Data Visual-
ization and Dimension Reduction. Springer Berlin Heidelberg (2007) 44–67


